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Abstract
In contrast to formulations of the Dirac theory by Hestenes and by the present
author, the formulation recently presented by Joyce (Joyce W P 2001 J. Phys.
A: Math. Gen. 34 1991–2005) is equivalent to the usual Dirac equation only
in the case of vanishing mass. For nonzero mass, solutions to Joyce’s equation
can be solutions either of the Dirac equation in the Hestenes form or of the same
equation with the sign of the mass reversed, and in general they are mixtures of
the two possibilities. Because of this relationship, Joyce obtains twice as many
linearly independent plane-wave solutions for a given momentum eigenvalue
as exist in the conventional theory. A misconception about the symmetry of
the Hestenes equation and the geometric significance of the algebraic spinors
is also briefly discussed.

PACS numbers: 03.50.Dy, 03.30.+p

The recent formulation by Joyce [1] of what he calls the ‘bivector Dirac equation’ in the
complex Dirac algebra (Clifford’s geometric algebra of Minkowski spacetime taken over the
complex field) can be decomposed into the Dirac equation in the Hestenes form [2–5] for mass
+m plus another equation for mass −m. The purpose of this comment is to prove this claim
and to discuss a few other aspects of the paper. The approach exploits the power of projectors
in geometric algebras. To start, we first review the Dirac equation for a free electron and its
formulation in algebraic form.

1. Dirac equation

Joyce’s formulation is made in the framework of the complex Dirac algebra, that is, Clifford’s
geometric algebra [6,7] of Minkowski spacetime taken over the complex field. A matrix form
of this algebra is traditionally used for the Dirac equation. Since the objective is to find a
new formulation of the Dirac equation, it is reasonable first to put the traditional formulation
directly in algebraic form. For simplicity, we consider only the case of a free electron; the
procedure for adding a gauge potential is straightforward and can be undertaken later. The
Dirac equation for a free electron in units with h̄ = c = 1 can be written as a matrix equation

i∇ψ = mψ (1)
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where ψ is a four-component complex spinor, and the gradient operator in Minkowski
spacetime (sum repeated indices µ = 0, 1, 2, 3)

∇ = γµ∂µ (2)

(which Joyce denotes by d)1 is an expansion in the 4 × 4 gamma matrices γµ with operator
coefficients ∂µ = ∂/∂xµ = ηµν∂/∂xν = ηµν∂ν . Indices are raised and lowered by the metric
tensors (ηµν) and (ηµν) of Minkowski spacetime. The algebra of the gamma matrices is that
of the vector basis of Clifford’s geometric algebra of spacetime, namely

γµγν + γνγµ = 2ηµν. (3)

In the algebra, the orthonormal basis vectors of spacetime are therefore taken to be
{γ0, γ1, γ2, γ3}, and the explicit matrices that represent them are not important. Joyce has
considered two possible choices for the metric, but to avoid unnecessary complications, I take
(ηµν) to be the diagonal matrix

(ηµν) = diag(1, −1, −1, −1) = (ηµν) (4)

corresponding to the choice of Joyce’s parameter η = −1.
The geometric algebra generated by associative products of basis vectors γ0, γ1, γ2, γ3 that

satisfy (3) with (4) is denoted [7] C�1,3. Four spinors ψ , each satisfying the Dirac equation (1),
can be used to construct a 4 × 4 solution matrix �. Let each column of � be a column spinor
ψ that satisfies (1). Then � is the matrix representation of an element of the Dirac algebra
C�1,3 over the complex field C. We construct explicit plane-wave solutions below, but the
point made here is that the Dirac equation (1) can be written directly as an algebraic equation
in C�1,3 ⊗ C

i∇� = m�, � ∈ C�1,3 ⊗ C (5)

that gives up to four independent solutions of the traditional column-spinor equation. This
equation remains valid under multiplication from the right by any constant algebraic element.
In particular, one can multiply by a projector P, that is a Hermitian idempotent

P2 = P = P†. (6)

For example, columns of a 4 × 4 matrix representation of the algebraic spinor � can be
extracted by the application of projectors P(α), α = 0, 1, 2, 3 defined with diagonal matrix
representations P(α) = (δµαδνα). Thus, the algebraic equation (5) is equivalent to four copies
of the usual spinor equation (1).

The projectors P(α) depend on the matrix representation. However, as we see below,
useful projectors can also be defined algebraically, independent of the representation.

2. Joyce equation

Joyce has formulated a different equation in the complex Dirac algebra C�1,3 ⊗ C. His
equation (19) for a free electron is

i∇�J = m�Jγ0 �J ∈ C�+
1,3 ⊗ C (7)

although Joyce uses the notation eµ in place of γµ. It differs from the Dirac equation (5) by the
extra factor of γ0 on the right. The equations are the same only if m = 0. The Joyce equation (7)

1 Joyce has introduced new notation for a number of terms and has redefined other symbols already in common use.
A change that is particularly liable to cause confusion is his redefinition of the wedge and dot products. This comment
employs the more established notation of Hestenes, but I shall relate this to the notation of Joyce where appropriate.
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is invariant under right multiplication of �J by any constant element that commutes with γ0.
The spinor can be decomposed into pieces �J = �JP+0 + �JP−0 where the constant elements

P±0 = 1
2 (1 ± γ0) (8)

are projectors. Equation (7) then splits into two parts, one equivalent to the usual Dirac
equation (1) in algebraic form, and the other similar but with the sign of the mass changed:

i∇�JP±0 = ±m�JP±0 (9)

where we noted the property that γ0P±0 = ±P±0. Thus, the part �JP+0 is a solution to the
Dirac equation (5), but �JP−0 satisfies an equation with the opposite mass −m. However
as indicated in equation (7), Joyce has imposed an additional condition on his solutions �J,
namely that they be elements of the even subalgebra C�+

1,3 ⊗C of the complex Dirac algebra (he
refers to �J as a ‘generalized bivector’, although it can also contain scalars and four-volume
elements). Thus �J can be expanded

�J = �K
J 
+

K, K = 1, 2, . . . , 8 (10)

in the basis {
+
K} = {1, γµγν, γ0γ1γ2γ3} of C�+

1,3 with µ, ν = 0, 1, 2, 3 and µ < ν, where
�K

J are complex scalar functions. However, the part �JP+0 of the Joyce spinor �J that is a
solution of the Dirac equation (5) cannot be even since if �J is even, then �Jγ0, which is part
of �JP+0, is odd. Indeed, the even and odd parts of �JP+0 are of the same size. Consequently,
there is no solution �J ∈ C�+

1,3 ⊗ C that is also a solution of the algebraic Dirac equation (5)
if m > 0. Nevertheless, this result does not preclude the possibility that there is some other
relation between �J and ψ that would be consistent with both equations (1) and (7). Joyce
does not specify an explicit relation between his �J and the usual Dirac spinor, but we can find
one by comparing his equation (7) with that of the Hestenes form.

3. Hestenes equation

Hestenes [2, 5] constructed a form of the Dirac equation in the real algebra C�1,3, which he
calls the spacetime algebra (STA). The Hestenes equation for the free electron in the STA is

−∇�Hγ1γ2 = m�Hγ0, �H ∈ C�+
1,3. (11)

The Joyce and Hestenes equations act in different spaces and are not equivalent. To compare
them, we consider both acting in the larger space of the complex Dirac algebra C�1,3 ⊗ C.

The Joyce and Hestenes spinors in C�1,3 ⊗ C are related by the simple projectors

P±12 = 1
2 (1 ± iγ1γ2) (12)

which can be applied to the Joyce equation (7) to give

i∇(�JP±12) = ∓∇(�JP±12)γ1γ2 = m(�JP±12)γ0 (13)

where we noted

P±12 = ±iP±12γ1γ2. (14)

Thus, any spinor solution �J can be split into parts

�J = �JP+12 + �JP−12 (15)

one of which (�JP+12) satisfies the Dirac equation in the Hestenes form and the other of which
(�JP−12) satisfies the same equation but with the sign of the mass reversed.

As noted above, �J is generally complex whereas the Hestenes �H is real. Let �∗
J be the

complex conjugate of�J, obtained by replacing each scalar coefficient�K
J in the expansion (10)
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of �J by its complex conjugate. The property (14) can be used to replace the complex even
�J in the products �JP±12 by real even elements �±

J :

�JP±12 = �±
J P±12 (16)

�±
J ≡ 1

2
(�J + �∗

J ) ± i

2
(�J − �∗

J )γ1γ2 (17)

thereby giving �±
J P±12 as solutions of the Hestenes form of the Dirac equation with the correct

or opposite sign on the mass term. Note that P±12 is even and therefore preserves the even
property of the spinor. It is also complex, but since the Hestenes equation (11) is real and
linear, the real part of any complex solution is also a solution. The real part of �±

J P±12 is just
1
2�±

J , and consequently the two spinors �±
J (17) are real even solutions of the Dirac equation

in the Hestenes form (11) with the two signs of the mass term. The products �±
J γ1γ2 are

similar solutions. The sum and difference of such solutions give the real and imaginary parts
of the Joyce spinor �J:

�J = 1

2
(�+

J + �−
J ) +

i

2
(�+

J − �−
J )γ1γ2. (18)

This completes the demonstration relating every solution of the Joyce equation (7) to sums and
differences of solutions to the Hestenes form of the Dirac equation with correct and reversed
signs on the mass term. The close association of Hestenes and Joyce spinors is reasonable
considering that the current density J has the same form, namely the vector part of �γ0�̃ (�̃
is the reversion of �), if � belongs to the real algebra C�1,3.

It is noted in passing that similar arguments, using both pairs of commuting projectors
P±12 and P±0 , can relate a general solution � of the Dirac equation (5) to four independent
solutions �H ∈ C�+

1,3 of the Hestenes equation (11) (with the correct mass term):

�H1 = 1

2
(�+ + �∗

+)γ1γ2 +
1

2i
(�− − �∗

−)γ0, �H2 = �H1γ1γ2

�H3 = i

2
(�+ − �∗

+)γ1γ2 +
1

2
(�− + �∗

−)γ0, �H4 = �H3γ1γ2

(19)

where �+ and �− are the even and odd parts of �.

4. Symmetry of the Hestenes equation

Part of Joyce’s stated reason for seeking an alternative algebraic form of the Dirac equation was
that he viewed the Hestenes form (11) as giving special status to given directions in space. In
particular, because equation (11) contains the γ1γ2 bivector, it was felt that the corresponding
plane was singled out. On this basis it might be disappointing that every solution to the Joyce
equation (7) is a combination of solutions to two equations of the Hestenes form. However,
the asymmetry that Joyce saw in the Hestenes equation is only apparent, as explained below.

The principal advantages of the Hestenes formulation of the Dirac equation are (1) that
it acts in the real Dirac algebra C�1,3 rather than in the more traditional complex Dirac
algebra used by most authors as well as by Joyce, and (2) it offers unambiguous geometrical
interpretations for expressions in the theory. The fact that the spinor of the Hestenes formulation
is an even element and that the Hestenes equation preserves its evenness suggests that the Dirac
theory can also be formulated in the real Pauli algebra C�3, which is isomorphic to C�+

1,3.
Indeed there is a very simple covariant formulation [8–10] using paravectors [11] of C�3, and
this is closely related to formulations in biquaternions and 2 × 2 matrices [12–14]. Further
background and references can be found in a couple of recent papers [15, 16].
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In both the C�3 formulation and in Hestenes’ analysis, the spinor plays the role of
a relativistic transformation amplitude from the reference frame of the fermion to the
laboratory frame. The orientation of the reference frame is not significant since global gauge
transformations �H → �HR, where R is a fixed spatial rotor, can rotate it arbitrarily. It is
therefore of no physical consequence that the particular bivector γ1γ2 appears in the Hestenes
equation (11) [17].

5. Plane-wave solutions

In section 10 of his paper, Joyce sought plane-wave solutions of the form �J = A exp(ikµxµ) =
A exp(iωt − ikx), where A is a constant element, to his equation (7). Differentiation gives the
condition2

−(ω + γ0γ1k)A = mγ0Aγ0. (20)

Solving for A, substituting into the left-hand side of (20), and noting (γ0γ1)
2 = 1, one finds

ω2 = k2+m2 for nonvanishing A. Furthermore, A has an expansion analogous to that of �J (10)
and is conveniently split into one part that commutes with γ0 and another that anticommutes
with it:

A = A+ + A− (21)

γ0A±γ0 = ±A± (22)

A+ = a + bγ1γ2 + cγ2γ3 + dγ3γ1 (23)

A− = γ0γ1(a
′ + b′γ1γ2 + c′γ2γ3 + d ′γ3γ1). (24)

A necessary and sufficient relation for the nontrivial solution of (20) is easily seen to be

A− = −ω + m

k
γ0γ1A+ (25)

and the equivalent relation

A+ = −ω − m

k
γ0γ1A−. (26)

Except for the sign of k, the solution is equivalent to that found by Joyce, and as he points out,
there are eight independent solutions for a given eigenvalue of the momentum p = ke1 (four
for each sign of ω = ±

√
k2 + m2), and this is twice as many as for the Dirac equation. The

presence of eight such solutions reflects the fact, discussed above, that Joyce’s spinor can be
split into parts that solve both the usual Dirac equation and same equation with a reversed mass
sign. Explicitly, if b = ia and d = ic, the part �JP−12 of the plane-wave solution �J vanishes
and �J satisfies the usual Dirac equation, whereas if b = −ia and d = −ic, the part �JP+12

vanishes and �J satisfies the Dirac equation with mass −m . Otherwise, the plane wave �J is
a solution of the Dirac equation only in the limit m → 0.
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2 Joyce’s related equation (22) differs in the sign of k, probably stemming from the identification of the component
k or the definition of ∇ (his d), equation (2). My explicit identification is k ≡ k1 and x ≡ x1.
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[7] Lounesto P 1997 Clifford Algebras and Spinors (Cambridge: Cambridge University Press)
[8] Baylis W E 1992 Phys. Rev. A 45 4293
[9] Baylis W E 1997 Eigenspinors and electron spin The Theory of the Electron (Advances in Applied Clifford

Algebras vol (S)) ed J Keller and Z Oziewicz (Cuautitlán: Facultad de Estudios Superiores Cuautitlán,
Universidad Nacional Autónoma de México) p 197
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